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I magine that you have been tasked to pro-
tect a gallery filled with priceless pieces of
art. To do this, you need to place guards

that watch every nook and cranny of the place.
At the same time, your boss is a bit annoyed
with you after you bought a banana duct taped
to a wall for a truly extraordinary sum of money,
so you really want to appoint as few guards as
possible. So, what is the smallest number of
guards needed to oversee the whole gallery?

What you have been described above is The Art
Gallery Problem. In all its simplicity, it can still be
used to outline many exciting things within math-
ematics: from geometry, into discretized problems
and graph theory, vertex colorings and much else.
Do not worry if none of these words make any
sense to you yet – they will, after reading this
text! All you need is some curiosity and a high
school-level grasp of mathematics. It is also worth
noting that The Art Gallery Problem is one of many
similar problems; there is of course no restriction
to art galleries and the guards might move around
or not be guards at all. For example, the task of
placing different types of sensors and different
settings of robotics give rise to similar types of
problems with solid real-world applications. But
for me, as a mathematician, the beauty of The Art
Gallery Problem lies in that it is easy to grasp, yet
still covers a lot of interesting and intricate ideas
from vast subareas of mathematics. So let us dive
right in!

Floorplans and Visibility to
Polygons and Lines

To make The Art Gallery Problem into a well posed
mathematical one, we need to clarify two things:

1. What is a floorplan of a gallery, mathemati-
cally speaking?

2. What do we mean when we say that a guard
guards something?

The one-word-answer for the first question is: a
polygon. Personally, I do believe we need a little
bit more than that though – even if you proba-
bly did hear about polygons in school. Usually,
people think about regular polygons: squares, tri-
angles and hexagons. That’s a good start! There
are, however, other shapes that are polygons too,
such as stars and all sorts of shapes that have
not been honored with specific names. In short,
polygons are shapes that you can draw on a piece
of paper using only straight lines. No circles or
bendy bits allowed! Technically, we also only care
about so-called simple polygons, so if you bring
out your ruler with intention of drawing some nice
floorplan-polygons, make sure that you also never
draw any lines that cross each other. In particular,
this means our polygons will never have any holes,
which admittedly is a little bit of a restriction but
it is one we have to live with. Look at Figure 1,
which shows two shapes we don’t allow (one with
crossing edges, and one with a hole) and, more im-
portantly, a rather reasonable floorplan-polygon
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Figure 1: A floorplan is a polygon: a shape without
holes, drawn with straight lines that never
cross.

which we will reuse a couple of times throughout
this text.
There is one more thing we need to mention

about polygons: edges and corners. The edges
of the polygon are the lines we drew to make
the polygon, and the corners are where the edges
meet. In the floorplan-polygon in Figure 1 you can
count the 26 corners if you want. Easier examples
include triangles and squares which have three
respectively four corners each.

Onto the next thing! We want to oversee every
piece of our floorplan. Now that the floorplan is
just a polygon, we may think of placing a guard
as picking a point in this polygon. For simplicity,
we will assume that every guard is stationary; no
guards move around. To compensate for this lazi-
ness, we at least make sure that a guard can turn
around and look in any direction. What does a
guard see then? Well, we say that a point inside
the polygon is visible from a guard, if we can draw
a straight line between the point and the guard’s
point so that the line never leaves the polygon –
see Figure 2 for an example. That last part of the
line being contained in the polygon is very impor-
tant, since it makes sure that guards cannot see
through walls.

Figure 2: A guard (big black dot) can see a point
(smaller dots) of the floorplan if the straight
line between them lies fully within the floor-
plan itself. The region of points this particular
guard sees is indicated in yellow.

At this stage, we can finally answer the sec-
ond question we asked: a gallery is guarded by a
group of guards if every point in the floorplan is
visible from at least one guard. At heart, nothing
has changed, but we have formalized the original
fuzzy statement into something even mathemati-
cians accept as reasonable. Even more excitingly,
we can write down what we want to prove!

Theorem. You never need more than n/3 guards
to guard a gallery with n corners.

Don’t be scared by the fancy word “theorem”, it
is just maths-speech for “a sentence that is true”.
Instead, be proud that you now have read one1
that you actually understand! The content of the
theorem is also sort of an answer to the very first
question we asked; what is the minimum number
of guards needed? Well, we don’t know exactly
unless you don’t give us more specific information,
but can at least say that it for sure won’t be more
than the number of corners of the room divided by
three. For example, if you have a gallery with six
corners, the theorem tells us that we need at most
two guards, since 6/2 = 3. Actually, if the six-
corner-gallery happens to be a hexagon, it suffices
with just one guard – but one is less than two, so
it’s all in line with what the theorem says.
A small remark here is that n/3 may not be a

whole number. For example, with four corners
we get n = 4 and consequently need at most
4/3 = 1.333 . . . guards. In such cases, it is ac-
tually completely fine to round down n/3 to the
nearest whole number; the theorem is still true.

What will happen now? Well, we will prove this
theorem! As mentioned earlier, it happens to paint
an enthralling story about many things: polygons
and geometry, graphs and colorings, how mathe-
maticians use domino effects and more. First stop:
how to discretize this problem.

Polygons and Triangles to Graphs

One thing that makes The Art Gallery Problem dif-
ficult from a computational point of view, is that
there are infinitely many possible placements of
a single guard. Even if the floorplan-polygon is
finite in size (measured in, say, square meters) we
can nudge a guard’s placement ever so slightly in
some direction, and the points now visible from

1Maybe you already know other too; the Pythagorean
theorem is a classic few manage to avoid throughout school.
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Figure 3: A triangulation of the art gallery’s floorplan,
that is, a division of the polygon into a collec-
tion of smaller triangles.

the guard may change quite drastically – perhaps
the guard suddenly sees around a corner that
earlier obstructed the view considerably. To get
around this problem, we will do something math-
ematicians call discretize. It means, simply put, to
go from something with infinitely many choices
(or numbers, or data points, or so) to finitely many.
In this case, we will subdivide the floorplan into a
bunch of triangles and then consider placements
of guards only in the corners of these triangles.
This is called triangulating a polygon – see Fig-
ure 3. In essence, we will draw non-overlapping
lines between corners of the polygon so that every
small region between lines is a triangle.
A good question to ask here is: can we trian-

gulate every polygon? The answer is yes and the
argument for why this is the case goes as follows:
if your polygon is a triangle, then it is already tri-
angulated and you don’t have to do anything. If
your polygon isn’t a triangle, then it has at least
four corners and you can always pick three consec-
utive corners in a way such that the straight line
between the first and last corners lies at least par-
tially inside the polygon. Look at Figure 4, where
two such “diagonals” are shown in red, drawn
between corners labeled a and c. If the diagonal
lies fully within the polygon, you have split the
polygon into two smaller pieces, each with fewer
corners than the polygon you started with. If the
diagonal at some point leaves the polygon, follow
the diagonal from the corner a until you find the
first time the diagonal crosses an edge of the poly-

Figure 4: Triangulating a polygon can by done by draw-
ing diagonals between corners, dividing the
polygon into smaller and smaller pieces, re-
peating the process as necessary.

gon. That edge has a corner inside the triangle
formed by a, b and c. Instead of using the diagonal
between a and c, we draw a new diagonal from a
to that corner inside the abc-triangle. Then you
have managed the same thing once again; you
have split the polygon into two smaller pieces and
can now repeat the process on those pieces until
every piece is a triangle. That is your triangula-
tion.
Hopefully, you’re now convinced that we can

triangulate every polygon. This is helpful for us,
since every point in the polygon now lies in one of
the triangles, and every point in a triangle is visi-
ble from the corners of that triangle. Therefore, it
is possible to place guards only at corners of these
triangles and still guard the whole gallery. Since
the corners are finitely many, we’ve discretized
our problem! But which corners do we pick? Well,
that’s the topic of the next section. However, be-
fore that, we’re going to make one more small
mathematical jump, into the world of graph the-
ory.

Let’s put it like this: we can still remove some in-
formation from the polygon without any problems,
and by doing so, we further simplify the problem
of guard placement. The only things we need later
on, is (1) which corners the polygon has and (2)
what the triangles in the triangulation are. Infor-
mation such as how large different triangles are,
exactly where the corners lie and similar actually
plays no role in where we will place guards. Why
so? Well, when we place a guard at the corner of
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Figure 5: Two graphs or, really, the same graph drawn
in two different ways. The dots are the vertices
and the lines are the edges.

a triangle, the guard will see every point of the
triangle no matter what the triangle looks like. We
do this by creating a graph from our triangulated
polygon. The graph consists of two things: vertices
and edges. More precisely, we create a graph from
our polygon by creating a vertex for each corner
in in the polygon, and draw an edge between two
vertices if there is a line in the triangulation be-
tween the corresponding corners. Figure 5 shows
the graph version of the triangulated polygon in
Figure 3. In the left version, the correspondence
between the graph and the polygon is more or less
obvious, but the graph to the right is actually the
same graph, the dots that represent the vertices
have just been shifted somewhat.
We will give the graphs that we obtain from a

triangulated polygon a special name: triangular
graphs, since this sort of graph consist of a bunch
of triangles glued together. If not immediately
obvious, I believe you can convince yourself that
the number of vertices in a triangular graph is the
same as the number of corners of the associated
polygon.

Graph Colorings

Okay, we have a triangular graph. We will place
guards at some of the vertices of that graph. This
will, somehow, prove that we never need more
guards than a third of the number of corners in the
gallery. To do this, wewill do something seemingly
unrelated, namely, we will assign each vertex a
color: blue, red or yellow. While doing so, we
will make sure that no two adjacent vertices, i.e.
vertices with an edge between them, get the same
color. We call this type of coloring of the vertices
a proper coloring, see Figure 6. If we manage,
this means that every triangle in the triangulation

Figure 6: A proper coloring of the triangular graph from
Figure 5.

have corners with three different colors. In case
you happen to be really impatient, I will tell you
already now that we will place guards at either
all the blue vertices, all the red vertices or all the
yellow vertices. But more on that later! First: are
we really, really sure that we can color the vertices
like this? Probably not, but we will be soon.

We will use induction, which is just a fancy way
of writing “mathematical domino effect”. It con-
sists of two parts: showing that the first domino
brick falls, and showing that if one domino brick
falls then so does the next domino brick. In fact,
you have already seen it! This was implicitly what
we used when we showed that we can triangulate
a polygon. If you remember, we first said that a
triangle is triangulated – that’s the first brick tilt-
ing over – and then showed that if the polygon is
larger we can divide it into two parts, triangulate
the parts and get a triangulation of the full thing.
The triangulation of the smaller parts are, in this
simile, the dominos earlier in the row, toppling
over the current brick.

For coloring the vertices with blue, red and yel-
low we also start with a triangle. Here there’s just
three vertices, and we can give them one color
each. Clearly, no two adjacent vertices have the
same color, so this is a proper coloring. Now comes
the tricky part: assume that there is some number
k so that every triangular graph with at most k
vertices can be properly colored. As we just ar-
gued, k = 3 is one such value of k, but there will
soon be others too. Now take any triangular graph
with k + 1 vertices. Since the number of corners
in the polygon and the number of vertices in the
triangular graph is the same, we have at least four
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Figure 7: One can always find an edge between two tri-
angles in a triangular graph (top row) which
divides the graph into two smaller triangular
graphs that can be properly colored (middle
row). Then, one can swap colors of one of the
small triangular graphs and glue the graphs
back together to get a proper coloring of the
large graph (bottom row).

vertices and at least two triangles in the graph.
Therefore, we can find an edge that belongs to
two different triangles at the same time and can,
so to speak, cut our graph into two parts along
that edge – see Figure 7.
The two smaller graphs will be triangular too,

and they are both smaller than the graph we
started with. In particular they have at most k
vertices and there must therefore exist a proper
coloring of them – we assumed so! For example,
if the big graph has four vertices, then cutting it
into two smaller graphs means each part will have
three vertices, and those two triangles have proper
colorings. We now want to find a proper coloring
of the large graph. To do this, start with the col-
orings of the small ones. If the colors along the
edge we used to cut up the graph are the same, we
can immediately glue the two smaller colorings

together. Otherwise, we can swap colors in one of
the smaller graphs so that it does match with the
other small graph. For example, we might have
to make all blue vertices to red, all red vertices to
yellow and all yellow vertices to blue. The color-
ing you get will still be proper – it’s just a way of
shifting the names of the colors around, right? In
Figure 7 the only thing you need to do is change
the yellow vertices to red and vice versa. After
potentially swapping colors in one of the graphs,
you can always glue the proper colorings of the
small graphs together and get a proper coloring
of the bigger graph. Voila!
If this was uncomfortably abstract for you, it

might help to think in more concrete steps. It
was easy to show that a triangle can be properly
colored. A triangular graph with four vertices
can be cut into two triangles and those triangles
can be properly colored and glued together, so
a triangular graph with four vertices can also be
properly colored. Similarly, if a graph has five
vertices, then it can be cut into a triangle and
a graph with four vertices (try drawing it!). As
just argued, both of those smaller graphs can be
properly colored and glued together to a proper
coloring of the five vertex graph. Then rinse and
repeat! The dominos fall. Neat, is it not?

One particularly interesting thing about vertex
colorings is that it is a very, and I really mean
very, well-studied problem. Its most famous appli-
cation is probably the Four Color Theorem which,
in essence, states that every map in the world can
be colored so that no two countries (or regions,
states, counties, ...) that share a border are drawn
with the same color. This was an open problem
for almost 200 years, and was one of the first the-
orems that was proved with the aid of a computer
– but all of that could be covered in a text as long
as this one.

Putting it all together

At this point, a recap is called for. We want to
prove that if we are given a floorplan-polygon
with n corners, then it is possible to place no more
than n/3 (rounded down) guards to guard the
whole floorplan. The first step of the proof was
to triangulate the polygon, and then transform
the triangulation into a triangular graph. Then,
we found a proper coloring of that graph. Now
we’re at the home stretch! Consider any point

Page 5 of 6



Guards in Galleries

inside the original polygon. By construction of
the triangulation, that point must lie in one of the
triangles. The point is thus visible, in particular,
from all three corners of that triangle. In other
words, there is a blue-colored corner that sees the
point, as well as a red-colored corner and a yellow-
colored corner – contemplate Figure 6 if you want
a visual reminder. Hence, if we place guards at
all corners with the same color, then the whole
gallery is guarded. Moreover, since all corners are
given precisely one color we have that

number
of blue
corners

+
number
of red
corners

+
number
of yellow
corners

=
number of
corners in
total.

So far, we have written no equations at all (shock-
ing, isn’t it!), but this one we might just have to
rewrite as an equation. If n is the total number of
corners and nblue, nred and nyellow are the number
of blue, red respectively yellow corners then what
we just wrote is the same as

nblue + nred + nyellow = n.

Let’s mention one more prominent proof-method
of mathematicians: contradiction. To reach a con-
tradiction, assume that all three values nblue, nred
and nyellow are strictly larger than n/3. Then, if we
sum the three values together we must get some-
thing that is strictly larger than n/3+n/3+n/3 =
n. So on the one hand we have

nblue + nred + nyellow > n,

and on the other

nblue + nred + nyellow = n.

But that means that we have proved that n is
strictly larger than itself, and that’s absurd! There
exist no such number. This means that something
must be wrong, and that something is the original
assumption that all three values nblue, nred and
nyellow are strictly larger than n/3. Therefore, at
least one of nblue, nred and nyellow is equal to or
smaller than n/3, and we can place guards at the
corners with the corresponding color. And to re-
iterate: placing guards there, means the whole
polygon is guarded. That’s the proof!
Is there anything more to say? Well, perhaps

not. But look at all we have covered! We went
from a quite tangible, real-world problem to a
geometric problem stated in terms of polygons and

lines therein, and then made that polygon into a
graph, rephrasing and throwing away redundant
information. We colored the vertices of a graph
in a certain way, and used those colors to finally
place our guards. The specific requirements on the
coloringmade sure both that the placements of the
guards made the whole thing guarded, and that
the number of guards was forced to be at most a
third of the number of corners. With all this, you’ve
glimpsed into the world of real mathematics; it
is quite different from trigonometric identities,
calculations with percentages and all that stuff
you did in school.
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