Fast recognition of H-free graphs

Anna Lindeberg

January 16, 2023

|1 Introductioﬂ

|2 Preliminariesl

D.1 Graphs]
.2 Graph classesl
2.3 Vertex orderingsi

LIﬁgree orderings and sequences{

3.1 Recognizing split graphsl
3.2 Recognizing threshold g:raphs]
3.3 Other degree-related recognition algorithmsl

I4_Lexico raphic breadth first searc

1.1 BFSand LBFS
1.2 Recognizing chordal graphsi
1.3 Recognizing cographs]
1.4 Other LBFS based recognition algorithms{

b Concluding remarké

References

© o ot W

11

14
15

17
17
24
31
36

38

40

1 Introduction

The classification of graphs in terms of different properties is an unavoidable
direction of study within the field of graph theory. As different classes of graphs
appear in theory and practice, it is a natural problem within algorithmic graph
theory to decide wether or not a given graph lies in a particular graph class. Early
and well-known examples of this type of decision problem, as seen in virtually
any introductory course in graph theory, includes bipartite graphs, which can be
recognized with a modification of breadth or deapth first search, and Eulerian
graphs, which can be recognized by studying the parity of the input graph’s
vertex degrees. We call an algorithm like this, whose purpose is the decide
(non-)membership in a graph class, a recognition algorithm.

Aside from the purely curious point of view, we study recognition algorithms
since there are many examples where computational problems that are typically
hard to solve can be answered remarkably efficiently as long as the input graph is
known to belong to some particular graph class. For example, Koning’s theorem
(see e.g. [15, Thm. 2.1.1]) states that in a bipartite graph the size of any maxi-
mum matching equals the size of any minimum vertex cover. This can be used
to construct a minimum vertex cover of bipartite graphs, although this problem
is, in_general, N"P-hard (for discussion on the algorithmic aspect of this, see
e.g. [B, Sec. 26.3]). As another simple example, many well-known NP-complete
graph problems become tractable when the input graphs are restricted to trees.
To mentioned a more sophisticated result, both optimal vertex colorings, maxi-
mum cliques and minimum vertex covers can be computed for perfect graphs in
polynomial time (see [22, Ch. 9], and Section 5 for definition of perfect graphs).
There are often good sources for more information on a particular graph class,
e.g. [12] proves that several N’P—complete problems can be answered in linear
time for cographs. An excellent overview of graph classes and computational
problems restricted to families of graphs can be found in [2], and a good online
encyclopaedia of graph classes in [33].

Succinctly put, graph classes are sets of graphs unified by some property.
A common way to characterize or even define a property is by some forbidden
substructure or collection of forbidden substructures. Perhaps the most well-
known example is that of planar graphs, via Kuratowski’s theorem: a graph is
planar if and only if it doesn’t have K5 or K33 as a minor [27] (c.f. [36], for
several shorter proofs in English).

We will focus on graph classes that are characterized by one or several for-
bidden induced subgraphs, that is, subgraphs where each possible edge from the
underlying graph appears. These graph classes are what we call H—free graph
classes. Consider, for example, the two graphs in Figure [L.1, and whether or not
they are Cx—free for different k, where C}, denotes the cycle graph on k vertices.
On the left the wheel graph Wy is given where four vertices and four edges are
marked in red, together forming a cycle of length 4. However, these four vertices
does not induce a Cy, since {a,c} is an edge in G. With some careful consid-
eration, one can see that Wy is Cy—free and, similarily, Cs—free. However, a Cg

W K5

€

Figure 1.1: The four highlighted vertices belong to a subgraph of Wy (left), but these
vertices and the red edges does not form an induced subgraph, since {a, ¢} is an edge of
Ws. The graph Wy is, for example, Cy—free and Cs—free but neither C3—free nor Cg-free.
The graph K5 (right) is not Cs—free, but is Cy—free for all k > 4.

is induced by the six vertices of degree 3. On the right, the complete graph K3
is given. Here any subset of the vertices of cardinality [< 5 induce a complete
graph Kj. In particular, this means that Ky is Cy—free for all k > 4.

The choice of focusing on H-free graph classes is, for one thing, a rather
natural restriction of the vast number of graph classes that exists. Moreover, a
characterization in terms of one or several forbidden induced subgraphs gives us
more structural information about the graphs, which can aid us when we either
try to construct algorithms or when we prove their correctness. This information,
that is, the H—freeness, can also be thought of as a ”local” structure that have
useful global properties: an interesting situation in itself.

It is also worth mentioning that if the list of forbidden subgraphs is finite,
then one can always construct a naive polynomial time recognition algorithm by
inspecting every element of the search space, i.e. iterating over each possible ver-
tex subset of appropriate size and checking for isomorphism with the forbidden
induced subgraphs. Since the best time complexity achievable in the context of
graphs is a running time proportional to the number of vertices and edges, that
is, an asymptotic running time of O(n + m) for input graphs with n vertices
and m edges, the naive approach performs very poorly except in the most trivial
cases. With that said, it can be a comforting thought to know that a polynomial
time algorithm exists before devoting time constructing an efficient recognition
algorithm. In contrast, recognition of perfect graphs (which are characterized
by an infinite set of forbidden subgraphs) was suspected to be a N'P-complete
problem until Chudnovsky et al. constructed a polynomial time algorithm of
time complexity O(n?) in 2005 [5].

The purpose of this project is to investigate, understand and describe the
current state of research on recognizing H-free graphs in linear time. Which H-
free graphs can we recognize efficiently, and how? Are there notable similarities
or differences? Which problems in the area remain open? To this end, we will
examine a handful of such graph classes and their linear recognition algorithms
closely, and summarize similar results for others.

As we will see, the recognition algorithms we cover can be put into two
categories: they are either degree-based or based on a particular type of graph
traversal called lexicographic breadth first search (LBFS). With degree-based
methods, we mean that either the collection of degrees or the ordering of the
vertices with respect to non-increasing degrees aid in efficiently recognizing the
particular graph class. Here we will see that split graphs and threshold graphs
are excellent examples of this particular paradigm. LBFS-based recognition
algorithms will follow a very specific pattern of two steps. Firstly, the vertices
of the input graph is ordered via one or multiple special searches prioritizing
vertices with multiple neighbors already ordered. When a satisfactory order of
the vertices is achieved, some property characterizing the graph class in question
is verified or refuted, thus correctly concluding membership or non-membership.

We begin with a section introducing necessary graph theoretic definitions,
then consider degree-based recognition algorithms in Section 3 and LBFS-based
recognition algorithms in Section 4. We finish with some closing remarks and
open problems in Section 5.

2 Preliminaries

In this section we focus on summarizing and establishing notation for the graph
theoretic concepts we need. For more information, the reader is referred to any
introductory text in graph theory, e.g. [15].

2.1. Graphs. A graph G = (V, E) consists of a non-empty finite vertex set
V and an edge set E where

EC{{z,y}|z#y, v,y cV}

We say that G = (V, E) has order n = |V| and size m = |E|. Occasionally,
we let V(G) and E(G) denote the vertex and edge set, respectively, of G. Two
vertices u and v in V' are said to be adjacent or neighbors if {u,v} € E. An edge
e = {u,v} has endpoints u and v, or is said to be incident to the vertices u and
v. Two edges are incident if they share an endpoint.

For a graph G = (V, E) we say that the collection P = {V1,Va,...,V;} is
a partition of V if each V; is a subset of V, the Vs are pairwisely disjoint, and
vV =Ub, V.

The complement of a graph G = (V, E) is the graph G = (V, E where E =
Hx,y}|z,y €V, 2 #y, {x,y} ¢ E}. That is, the edge set of G consists precisely
of the non-edges of G, and vice versa.

The neighborhood of a vertex v is the set

Ng(v) ={u € V |[{v,u} € E},

and the closed neighborhood of a vertex v is defined as Ng[v] = Ng(v) U {v}.
The degree of v equals the cardinality of its neighborhood, and it is denoted by
degq(v). If the graph G is understood from context we drop the subscript G.

Two graphs G = (V,E) and H = (V',E’) are said to be isomorphic if
there exists a bijective map ¢ : V. — V' such that {u,v} € F if and only if
{¢(u), p(v)} € E'. We denote this as G ~ H.

A subgraph of a graph G = (V, E) is a graph H = (V’, E’) such that V' CV
and E' C FE where the endpoints of all edges in E’ lies in V’. For any set S C V,
the induced subgraph G[S] is the subgraph of G which has S as vertex set and
the set {{u,v} € E|u,v € S} as edge set. If S = {v1,v,...,v} we simplify the
notation as G[S| = G[vy, ..., vg]. If H is a graph, we say that S induces H in G
if G[S] and H are isomorphic.

For any S C V, we let G — S denote the induced subgraph G[V \ S]. If
S = {v}, we simplify the notation as G — v.

For any graphs G and H, we say that G is H —free if there exists no set
S C V(G) such that S induces H in G. If H = {H1, Ha, ..., Hy} is a set, possibly
infinite, of graphs, we say that G is H—free if it is H;—free for i =1,2,... k.

A hereditary property of a graph is a property P that exhibits the following
implication:

the graph G satisfies P = every induced subgraph H of G satisfies P.

2.2. Graph classes

A path P, is the graph with vertex set {vj,va,...,vx} and edge set
{{vi,vig1} |1 < i < k —1}. Py is said to have length k — 1. We sometimes
identify a path P only by the sequence vivs ... v, and call v; and vg endpoints
of the path, and the remaining vertices midpoints of the path. For any graph G,
a path in G is a subgraph (not necessarily induced) of G isomorphic to Py for
some k.

If there exists a path zvivs...vpy between any two distinct vertices xz and
y in a graph G, we say that G is connected, otherwise it is disconnected. A
maximal connected subgraph of a graph is called a connected component, or
simply a component of the graph. Clearly, if a disconnected graph is H-free for
some connected graph H, then so is each of its components, and vice versa.

A cycle Cy, where k > 3, is the graph with vertex set {vi,ve,...,vx} and
edge set E(Pg) U {{v1,vx}}. The length of a cycle C} is the same as its size, i.e.
k. As for paths, a cycle in G (an induced cycle in G) is a subgraph (an induced
subgraph) of G isomorphic to Cj for some k.

A complete graph K, is the graph with vertex set {vi,ve,...,v,} and edge
set {{vi,v;} |1 < 4,5 <n,i#j}. If §CV(G) for some graph G induces a K;
in G (i.e G[S] = K;) we call S a clique in G.

If E(G[S]) = 0 for some graph G and S C V(G), then we say that S is an
independent set of G.

A graph G = (V, E) is bipartite if V can be partitioned into two sets X and YV’
such that there exists no edge between two vertices of the same set. That is, both
X and Y are independent sets of G. The partition {X, Y} is called a bipartition
of G. A well known characterization of bipartite graphs is that they are the
graphs that contain no cycles of odd length. Since every odd cycle contains an
induced odd cycle, the bipartite graphs are precisely the {Cs, Cs5, Cy,...}—free
graphs. We let K, ,, denote the complete bipartite graph, i.e. the graph with
bipartition {X,Y} such that |X|=n and |Y| = m, where

E(Kn,m) = {(.%',y) ‘[13 €EX,ye Y}

A graph G is a tree if it is connected and has no cycles. If it has no cycles, but
is disconnected, it is called a forest. By definition, the forests and trees together
form the {Cj5, Cy,...}free graphs.

2.2. Graph classes. We will now introduce the four graph classes, that is,
families of graphs with some common property, whose recognition algorithms
compounds the bulk of this text. Other graph classes will be introduced as they
appear. A thorough overview of graph classes can be found in e.g. [2, B3].

Chordal graphs. A cycle vivy...v,v1 in a graph G, where k > 4, has
a chord if there exists some 1 < ¢ < j < k such that {v;,v;} is an edge in
G. The graph G is said to be chordal if every cycle in G of length at least
four has a chord. Clearly, this means that a graph is chordal if and only if it
is {Cy,Cs, ... }—free. Sometimes, chordal graphs are called triangulated graphs,
e.g. in [21]. Examples of chordal graphs include all trees, forests and complete
graphs. See also Figure R.1].

2.2. Graph classes

}>./I71 =P

Figure 2.1: A chordal graph (left) with induced Py in red and the cograph (K1 ® K;)®
(K1 ® K1 ® Kp) (right) with induced Cy4 in red. That is, chordal graphs need not be
cographs, and cographs need not be chordal.

Cographs. Let G = (V, Eg) and H = (Vg, Ey) be graphs with disjoint
vertex sets. We define the disjoint union of G and H as the graph G & H =
(Ve U Vy, Eg U Eg). Moreover, the join of G and H is the graph G ® H with
vertex set V(G ® H) = Vg U Vy and edge set

E(Ge®H)=EqUEgU{{g,h}|ge Vg, h €V}
With this, we can formulate the recursive definition of a cograph:

e K is a cograph
e if G and H are cographs, then G & H is a cograph, and
e if G and H are cographs, then G ® H is a cograph.

See Figure @ for an example. Cographs were introduced under the name ”com-
plement reducible graphs” by Corneil et al in [12], and can be shown to be
precisely the class of Py—free graphs [12, Thm. 2]. Corneil et al. also notes that
every cograph can be represented by a cotree, which is a special type of labelled
trees capturing the structure of the cographs. For us, it suffices to know that
cotrees can act as certificates of membership in the class of cographs, and is
useful in the construction of efficient algorithms on cographs.

Split graphs. A graph G = (V, E) is a split graph if its vertex set can be
partitioned into a clique K and an independent set I. We call such a partition
(K, I) a split partition. Split graphs was characterized as {Cy,Cs,2Ks}-free
graphs in [17] (see [21, Thm. 6.3] for a reproduction), where 2K5 is the graph
with two disjoint edges (i.e. 2Ks = C}). See Figure @ for an example.

Threshold graphs. Lastly, we introduce threshold graphs. They have
appeared in literature under several equivalent definitions (c.f. [32, 21]), but is
given its name from the following one: a graph G = (V, E) is a threshold graph
if there exists an integer t, called threshold value, and a labelling v : V' — N of
the vertices such that

Z v(v) <t <= Sisan independent set of G.
veS

In terms of forbidden subgraphs, threshold graphs are the {Cy, 2Ky, Py}—free
graphs %ue to [7], reproduced in [21, Thm. 10.7]). An example is given in
Figure

2.2. Graph classes

// \\

Figure 2.2: An example of a split graph with an induced P, so it is not a threshold
graph. The split partition (K,I) of the graph is in this case unique; compare with
Figure

2 1
e

Figure 2.3: A threshold graph with threshold value ¢ = 7. The threshold labeling of
each vertex is marked in red, eg. v(b) = 7. Note that every independent set of the graph
is either a subset of {a,c,d, e}, of {a, f} or of {b}. In particular) _qv(x) <7 for each
S C{a,c,d e}, while _gv(xr) >T7ifbec Sand [S] > 1.

2.3. Vertex orderings

Figure 2.4: A schematic figure of containments of the classes of chordal graphs (CH),
cographs (CO), split graphs (S and threshold graphs (7). We have CH N CO # 0,
SCCHand T=5NCO.

These graph classes exemplify that we may deal with classes that are H—free
for one forbidden subgraph H, or H—free for either a finite or infinite set of
subgraphs H. Moreover, they act as an excellent example of how different graph
classes can “overlap”, and that these inclusions and intersections can easily be
derived from the sets of forbidden subgraphs. In general, the following holds

Lemma 2.1 ([2, p.229]). Let A be the class of Hi—free graphs and B the class
of Ho—free graphs. Then the following holds:

(i) If H € H1 and H is an induced subgraph of the graph G, then A is G—free.
(i) The class AN B is the class of (H1 U Ha)—free graphs.

(iii) If, for every graph G in Ha, there is some graph in Hy that is an induced
subgraph of G, then A C B.

For example, principle (iii) of Lemma @ implies that the class of split graphs
is properly contained in the class of chordal graphs, since each cycle Cy either
lies in {Cy, C5,2K5} itself, or has two "opposite edges” inducing a 2K5.

Another slightly more complicated application of Lemma @gis the following.
The intersection of the class of split graphs and the class of cographs must, by
property (ii) be precisely the class of {Cy, C5, Py, 2Ks}—free graphs. Since Py is
an induced subgraph of Cs, every {Cy, Py, 2Ks}—free graph is Cs—free as well, by
property (i). In other words, the threshold graphs are precisely the graphs that
are both split graphs and cographs.

Also recall that a chordal graphs need not be a cograph and vice versa (see
Figure). Since there are certainly graphs contained in both classes (e.g.
complete graphs), their intersections is non-empty as well. These containments
are visualized in Figure P.4.

2.3. Vertex orderings. As we will see, it is often helpful to order the ver-
tices of a graph when dealing with them algorithmically. Here we formalize the
notion of different vertex orderings.

2.3. Vertex orderings

Assume a graph G = (V, E) of order n is given. An ordering of the graph’s
vertex set is a bijective map o : {1,2,...,n} — V. We will often use the notation
o = (v1,v2,...,v,) to denote an ordering o where (i) = v;. For any ordering o,
we let 0! denote its unique inverse. Moreover, v <, u denotes that v precedes
u w.r.t the ordering, i.e. o~ 1(v) < o1 (u).

We say that a vertex v of the graph G = (V, E) is a simplicial vertez, if
N(v) induces a clique in G. An ordering ¢ = (vi,v2,...,v,) of V is a perfect
elimination ordering (PEO) if, for all 1 < i < n, v; is simplicial in the graph
Glv1, v, ... ,v;)]. We warn the reader that PEOs sometimes are defined as some o
where, instead, v; is simplicial in the graph G[v;, vit1,...,v,] foreach 1 <i<n
(see e.g. in [21]). By considering the reverse (vy,, Up—1,...,v1) of o the definition
we use is obtained. For examples of PEOs, see Section @

A non-increasing degree ordering of a graph G is an ordering o =
(v1,v2,...,v,) such that deg(vy) > deg(ve) > ... > deg(v,). The (non-
increasing) degree sequence of a graph G is an ordered sequence of integers
d = (di,da,...,d,) where d; = deg(v;) for every non-increasing degree ordering
o = (v1,v2,...,v,) of G. In particular this means that the degree sequence
is uniquely defined for each graph G, while there may exists multiple different
(non-increasing) degree orderings of G.

10

3 Degree orderings and sequences

We will begin by considering a handful of recognition algorithms that uses the
degrees of the input graph’s vertices in some way. The most rudimentary example
is that of recognizing trees: as noted in any introductory text on graph theory,
a graph of order n is a tree if and only if its degrees are all nonzero and sum to
2n — 2. Since all degrees can be calculated in linear time, this directly yields a
fast recognition algorithm for trees. By generalizing the formula somewhat, it
can be extended to recognize forests as well. Here we will begin by studying how
split graphs can be recognized in linear time, followed by a section describing
how threshold graphs can be recognized efficiently.

3.1. Recognizing split graphs. Recall that a graph is a split graph if
it has a split partition or, equivalently, if it is {C4, C5,2Ks}-free. _The split
partition of a split graph is not necessarily unique, as seen in Figure B.1. There
exists another characterization of split graphs in terms of its degree sequence by
Hammer and Simeone in [25] which, as remarked in [2, p.203], can be used as a
recognition algorithm of split graphs. The characterization is the following.

Theorem 3.1. A graph G with non-increasing degree sequence d =
(di,da,...,dy) is a split graph if and only if

m

> di=m(m - 1)+ zn: d; (3.1.1)

i=1 i=m-+1
where m = max{i|1 <i<n,d; >i—1}.

Hammer and Simeone proves this in the context of the splittance of a graph
— a graph invariant which measures how many inserted and deleted edges are
needed for a graph to become a split graph (e.g. the splittance of a split graph
is zero). We instead suggest a direct proof. Before so, we say that the split
partition (K, T) is a clique-mazximal split partition if there exists no vertex v € T
adjacent to every vertex in K and introduce the following lemma.

a b a b

LN

)
d ¢ f ¢ f
K T K’ T

Figure 3.1: A split graph G and two different split partitions of G. Note that the
partition (K, T) is clique-maximal, since neither e nor f neighbors all of K. The split
partition (K’,I’) is not clique-maximal, since e.g. N(d) = K.

/

11

3.1. Recognizing split graphs

Lemma 3.1. Given a non-increasing degree ordering o = (v1,va,...,v,) of the
split graph G, there exists a clique-maximal split partition (K,I) of G such that
K = {v1,v2,...,v} and I = {v|g |41, V|K|+2> - - Un}-

Proof. Let G be a split graph and let 0 = (v1,v2,...,v,) be a non-increasing
degree ordering of G. For any clique-maximal split partition (K, 1) of G the
following two implications hold for all v € V:

(i) deg(v) < |K|—1 = wel, and
(ii) deg(v) > |K|—-1 = veK.

The implication in (i) holds since if a vertex has fewer than |K| — 1 neighbors,
then it cannot lie in a clique of size |K|. Hence, it lies in I. To verify (ii), note
that if deg(v) = | K|, then the clique-maximality of (K, I) ensures v € K. If, on
the other hand, deg(v) > |K]|, then v has at least some neighbor in I and must
therefore lie in K.

Either all, some or none of the vertices of degree |K| — 1 are elements of K.
To deal with this, first suppose there exists vertices v € I and v € K such that
deg(v) = deg(u) = |K| — 1 and u <, v. Since deg(v) = |K| — 1 and v € K the
vertex v is not adjacent to any vertex in I, in particular not to u. But then u, a
vertex which has no neighbors in I, must be adjacent to all vertices of K but v.
Hence K’ := (K \ {v})U{u} is a clique, and I" := (I'\ {u})U{v} an independent
set. Moreover, this exchange of vertices preserves the clique-maximality, i.e.
(K',I') is a clique-maximal split partition. Since we can repeat the exchange for
any two vertices of degree |K| — 1 satisfying the critera above, we can always
construct a clique-maximal split partition satisfying the assertion.]

The key argument of this proof is the exchange of vertices between the clique
and the independent set. For a concrete example, consider Figure B.1. Suppose
we are given the non-increasing degree ordering o = (b, a,c, f,d,e). We have
seen that the given split partition (K, I) is clique-maximal, but K # {b,a,c, f}.
Since N(d) = N(f) = {a,b, ¢}, we easily establish that ({a,b,c, f},{d, e}) indeed
is another clique-maximal split partition, satisfying the assertion of Lemma

With this established, we continue with

Proof of Theorem @ First, let G = (V, E) be a split graph with non-increasing
degree ordering o = (v1,v2,...,v,). Lemma @ ensures the existence of a
clique-maximal split partition (K,I) of G such that K = {v1,...,vk} and
I = {v|g|41,---,vn}. Note that d = (di,...,d,) where d; = deg(v;) for each i
is the non-increasing degree sequence of G. Let E(X,Y’) denote the set of edges
in G with one endpoint in X and one endpoint in Y. If we sum the degrees of
vertices in K we count each edge in the clique K twice, and each edge with an
incident vertex in I only once. That is, we get

K|
> di =2|E(K,K)|+|E(K,I)| = |K|(|K| - 1) + Z d;.
i=1 i=|K|+1

12

3.1. Recognizing split graphs

To show () it thus suffices to show that |K'| = m. Clearly deg(v|x|) > |K|—
since v € K. Hence |K| € {i[1<i<mn,d; >i—1}. Thus, if m # |K|, then
m > |K|. If so, then the vertex v, € I satisfies deg(v,,) > m —1 > |K| — 1.
This is a contraction — since (K, I) is clique-maximal and v, € I this vertex
has at most |K| — 1 neighbors. Hence m = |K/|, and () is satisfied.

Conversely, suppose G = (V,FE) has a non-increasing degree sequence
d = (dy,...,d,) satisfying () Let 0 = (v1,v2,...,v,) be any fixed non-
increasing degree ordering of G. Furthermore, put K = {vi,...,v,} and
I = {vm41,...,v,}. For contradiction, assume that (K,I) is not a split par-
tition of G. If K is not a clique, then the number of edges in G[K] is strictly
bounded by the number of edges in a clique of size |K| = m. That is,

%m(m C 1) = |B(K, K)| > 0

On the other hand, if I is not an independent set, then G[I] has at least some
edge, i.e. |[E(I,I)| > 0. Since either K is not a clique or [is not an independent
set we must therefore have that

1

gm(m —1) = |B(K, K)| + |E(,T)| > 0. (3.1.2)
Now, note that
“ 1
Y di =2|E(K,K)|+ |E(K,I)| <= |E(K,K)| =5 <Zd — |E(K,) \)
=1
and

i:d_2\E(II]+]E(KI)\<:>]EII (Zd—\EKI)\)

i=m+1 i=m+1

by similar argument as above. Inserting these values of |E(K, K)| and |E(,I)]

in () gets us
L d; d;
3 Z 3
i=m-+1
This contradicts our assumption in (), so (K, I) is a split partion of G. [

With this characterization, we present the rather obvious recognition algo-
rithm for split graphs in Algorithm m

Theorem 3.2. Split graphs of order n and size m can be recognized in O(n+m)
time.

Proof. Consider Algorithm E Its correctness follows directly from Theorem @
For the linear running time, consider any input graph of order n and size m. An
array of the vertices’ degrees can be constructed in O(n + m) time by iterating

13

3.2. Recognizing threshold graphs

Algorithm 1: Recognizing split graphs using a characterization of its
degree sequence.

Input: A graph G = (V, E)

Output: True if G is a split graph, False otherwise.

1 begin

2 d < (dyi,da,...,d,), a non-increasing degree sequence of G
3 k < max{i|d; >i—1}

4 Sl — 2?21 di

5 Sy <+ k(k — 1)+Z?:k+1 d;

6 if Sl = S2 then

7 L return True

8 else

9 L return False

over the neighborhood of each vertex. Since the degrees are bounded above by
n one can use e.g. Counting sort [§, Sec. 8.2] to sort the array in O(n) time, so
that it represents the non-increasing degree sequence of the input graph. Since
the index k and the two sums can clearly be calculated in O(n) time simply
by iterating over the relevant values we conclude a final time complexity of
O(n +m). O

Although Theorem El! precedes the article [26] of Heggernes and Kratsch by
some 25 years, the latter two authors claim to have constructed the first recog-
nition algorithm of split graphs.B Even though their algorithm was not the first
of its kind it has one particular strength: it outputs both certificates of mem-
bership (i.e. a split partition) and non-membership (a set of vertices inducing
either a Cy, a C5 or a 2K3). Unsurprisingly, the calculation of the certificate in
question requires some extra steps and produces a somewhat involved algorithm.
We refer to [26] for details.

3.2. Recognizing threshold graphs. Threshold graphs are, as noted in
the preliminaries, precisely the graphs that are both cographs and split graphs.
We will see that cographs can be recognized in linear time in Section @ and
have just now seen that the same is true for split graphs. Obviously, this already
means that threshold graphs can be recognized just as efficiently, with no new
algorithms to consider! However, threshold graphs also have a characterization
in terms of its degrees, originally credited to Chvatal and Hammer in [[7]. To
state this result, let 0 < 01 < da < ... < dp, < |V be the degrees of non-isolated
vertices for a given graph G = (V| E)). Moreover, put dg = 0 and §,,+1 = |V|— 1.

*To be fair though, Hammer and Simeone never mention that the characterization in The-
orem can be used in an algorithmic context, and it does not seem to be a very wide-spread
fact.

14

3.3. Other degree-related recognition algorithms

By defining
D; ={v e V| deg(v) =6}

for i =0,1,...,m we obtain a partition of V' into m + 1 sets, where only Dy can
possibly be empty. We call this partition a degree partition of G.

Theorem 3.3 ([21, Thm. 10.4]). Let G be a graph and let {Dy, ..., Dy} a degree
partition of G. Then G is a threshold graph if and only if

diy1 = 0; + | Dy
fori=0,1,...,|m/2| —1.

Much like in the case of recognizing split graphs, this result can immediately
be repurposed as a linear-time recognition algorithm, since the J;s and the car-
dinalities of the D;s can easily be extracted from a degree sequence (c.f. [21,
Cor. 10.5]). The proof of Theorem uses induction for the only if-direction,
and constructs a threshold labeling for the if-direction, and require no particu-
larly difficult steps.

It is worth mentioning that Heggernes and Kratsch also has provided a recog-
nition algorithm of threshold graphs which outputs both a certificate of member-
ship and of non-membership [26], but it involves no specific techniques related
to threshold graphs. Perhaps more important to emphasize here, is that even
though the study of how different graph classes are related in terms of inclusions
surely yields edvances in the field of recognition algorithms, better algorithms
can sometimes be constructed when we focus on a single graph class. Here, "bet-
ter algorithms” are not necessarily asymptotically faster, but have other good
properties in terms of simplicity and implementability. For us, threshold graphs
acts as a very good example of this.

3.3. Other degree-related recognition algorithms. Inspired by the
{C4, C5, 2K }—free characterization of split graphs, Maffray and Preissman stud-
ied {Cy,2Ks}free graphs in [31]. They decided to call graphs in this class
pseudo-split graphs, in light of the following result.

Theorem 3.4 ([Bl, Thm. 3]). Let G = (V, E) be a graph of order n > 5. Let
d = (dy,ds,...,dy,) be the non-increasing degree sequence of G. The following
statements are equivalent

1. G is {C4,2K35}free, but is not Cs—free.

2.V can be partitioned into sets X, Y and Z such that X is a clique, Y is an

independent set and G[Z] is a Cs. Moreover, every vertex in Z is adjacent
to every vertexr in X and adjacent to no verter in'Y.

3. With m = max({i|d; > i+ 4} U{0}) we have

m

> di =m(m+4) + Zn: d;

=1 i=m-+6

andd;y=m+2 fori=m+1,m+2,...,m+5.

15

3.3. Other degree-related recognition algorithms

Since graphs of order strictly less than five are vacously Cs—free, this means
that every pseudo-split graph is either a split graph or satisfies the conditions
of Theorem . Algorithm [ll can thus be extended to recognize pseudo-split
graphs as well as split graphs in linear time.

Another related recognition algorithm is that of trivially perfect graphs pre-
sented in [37]. This is a graph class named by Golumbic in [20], where a graph G
is said to be trivially perfect if the number of maximum cliques in G equals the
number of vertices in a maximum independent set of G. Yan et al. presents sev-
eral additional characterizations of trivially perfect graphs, and to understand
the one used in the recognition algorithm we need the following definitions. A
rooted tree is a tree with a distinguished vertex r called the root, and a rooted
forest is the disjoint union of multiple rooted trees (and thus have several roots).
An induced graph of a rooted forest F = (V, E) is the graph G(F) = (V, E’),
where {u,v} € E’ if and only if u # v and there exists a path avoiding all roots
of I' with w and v as endpoints. The abovementioned characterization is the
following.

Theorem 3.5 ([37, Thm. 3] and [20, Thm. 2]). Let G be a graph. The following
statements are equivalent.

G is a trivially perfect graph.
G is {Py,Cy}—free.
G is a cograph and a chordal graph.

e v~
v

For any path viva...vx in G such that deg(vi) > deg(va) > ...
deg(vp—1), the set {vy1,va,...,vn} is a clique in G.
5. G is induced by some rooted forest F.

Much like in the case of threshold graphs, in Section @ we will see that both
chordal graphs and cographs are recognizable in linear time. Hence the same
holds for trivially perfect graphs. However, this complicates the matter more
than necessary, as Yan et al. shows in their algorithm, which is based on the last
two statements of Theorem @ Since the algorithm requires some_arguments
specific to rooted trees, we refer to [37] for details. See also Section Y.4.

16

4 Lexicographic breadth first search

In this section we will see how lexicographic breadth first search can be used
to recognize several H-free graph classes. These recognition algorithms follow a
general paradigm of two steps: first the vertex set of the input graph is ordered,
then a verification of some characterizing property of the graph class in question
is performed. We begin with a general discussion of lexicographical breadth first
search, followed by a section each on how it can be used to recognize chordal
graphs respectively cographs. The last section review the more involved multi-
sweep variants that can be used to recognize a couple of other graph classes, e.g.
interval graphs.

4.1. BFS and LBFS. The idea of starting at a certain vertex and then
traversing (or searching) the vertices of a graph along its edges is a necessity in
algorithmic graph theory. Formally, such an approach should, at the very least,
yield an ordering of the graph’s vertex set.

One of the simplest and best-known ways to traverse a graph and determine
an ordering o starting at a fixed starting vertex is by a breadth-first search
(BFS). In Algorithm P we present one way to understand BFS: we use a scheme
of integer labels of vertices, where a vertex v is visited before a vertex u only if
label(v) > label(u). Moreover, if label(v) > label(u), then v will precede u in o.
Positive labels are assigned to vertices as soon as they appear as a neighbor of
a vertex that is currectly being dealt with (i.e. visited), and once a vertex has a
positive label it remains fixed.

Algorithm 2: Using labels to find BFS ordering
Input: A graph G = (V, E) of order n, and a vertex v € V
Output: An ordering o of V

1 begin

2 label(v) < n

3 label(u) < 0 for all uw € V' \ {v}

4 fori=1,2,...,ndo

5 Pick unvisited u € V' with largest label, breaking ties arbitrarily
6 Mark u as visited

7 o(1) < u

8 U+ {w eV |w e N(u), label(w) = 0}

9 label(w) <~ n —i for all w € U
10 return o

Before continuing, it is worth mentioning that perhaps one of the most well-
known applications of BFS is that of a linear time recognition algorithm of
bipartite graphs. Since the bipartite graphs are C;—free for each odd integer
1 > 3, and BFS can be tweaked into finding odd cycles, a linear time algorithm
for bipartite graphs is readily obtained.

17

4.1. BFS and LBFS

w

Figure 4.1: Since d(v,u) = d(v,w) =1 and d(v,z) = d(v,y) = d(v, z) = 2 in the given
graph G any run of BFS(G,v) will order w and w after v, but before z, y, and z. The
order between u and w depend on how we break ties, and the same holds for x, y and
z, as seen in Figure §.2. Instead considering LBFS(G, v), we note that z_will always be
placed after v and w, but never after y nor z — compare with Figure {.3.

For those who have seen BFS before, this labeling scheme might seem un-
usual. Typically, no such labels are used in practice, since they introduce the
need to make many comparisons in step a of Algorithm P. Typically, a queue is
used instead, since this is easily implemented to yield a linear time complexity of
O(n + m) for an input graph G = (V, E) of order n and size m. Note, however,
that we expect both variations of the algorithm to output the same order on
the vertices, at least if the tie-breaking in step [of Algorithm E is made in the
same way as the neighbors are added to the queue. For more information on the
"standard” BFS algorithm, see virtually any standard text on graph theory or
algorithms, for example, [8, sec. 22.2].

The main idea of lexicographic breadth-first search (LBFS) is to break ties
slightly less arbitrarily. Broadly speaking, it may seem more urgent to visit
vertices that are neighbors to more than one already visited vertex, than those
which are neighbors to solely one already visited vertex. Consider, for example,
the graph G in Figure f.1. In a BFS starting at vertex v the vertices v and w
will be visited directly after vertex v (in arbitrary order), but depending on how
we break ties we might visit either one or both of vertices y and z before vertex
x, although x is a neighbor of both v and w while y and z are neighbors of u
but not of w. As we will see, any run of LBFS starting at v will visit before
both y and z.

Now, with = (x1,z2,...,2s) and y = (y1,92,...,y:) as ordered tuples in
7*, we say that x is lexicographically larger than y, in symbols & > y, if one
of the two following conditions is satisfied:

o there is some index j, 1 < j < max(s,t), such that z; = y; forall 1 <i < j
and such that z; > y;, or

e t<sand x; =y; forall 1 <4 <t.

18

4.1. BFS and LBFS

In particular, any tuple with at least one entry is larger than the empty tuple
(). For example, (6,4,7) >ex (5,8,7) >lex (5,8) >lex ()-

Algorithm B describes a small modification to the labeling scheme of Al-
gorithm E which motivates the use of the word ”lexicographic” in LBFS. This
algorithm was introduced by Rose, Tarjan and Leuker in [35], and discussed in
detail both in the survey article of Corneil [L0] and in [21, Ch. 4]. The only
difference between Algorithm E and Algorithm E is that we modify the labels
by appending integer values, and with it keep track of which unvisited vertices
that are neighbors to multiple already visited vertices. Compare Figure @ and
Figure for an example of the difference between BFS and LBFS on the graph
in Figure @.1I.

Clearly, Algorithm E will always return an ordering of the vertex set of the
input graph, and is in that sense correct. We will call any ordering that is
returned by a run of LBFS an LBFS ordering (in fact, LBFS orderings can be
neatly characterized, see [11, Thm. 2.4]).

Algorithm 3: Using labels to find LBFS ordering
Input: A graph G = (V, E) of order n, and a vertex v € V
Output: An ordering o of V

1 begin

label(v) « (n)

label(u) < () for all u € V' \ {v}

fori=1,2,...,ndo

Pick unvisited u € V' with lexicographically largest label,

breaking ties arbitrarily

Mark u as visited

(1) < u

U<+ {w eV |we N(u), w is not visited }

Append n — i to label(w) for each w € U

ok WN

© o N o

10 return o

Much like BFS, we need some tricks to implement LBF'S efficiently. Translat-
ing the label scheme of Algorithm P into its queued version is simply a question
of continously arranging the unvisited vertices in the same order as their labels
would have been ordered. We will do the same for LBFS, although the nature of
these labels require us to use a more sophisticated queue. Consider Algorithm H,
where an ordered partition of the vertex set V' is used as a sort of queue of sets.
We call the sets of the partition cells. The idea of the ordered partition is that
two vertices should belong to the same cell if and only if they, at that point of
the run of the algorithm, would have been assigned the same label. Moreover,
the cells of the partition should be ordered such that their corresponding (and
hypothetical!) labels appear in decreasing order. To achieve these two properties
a pivot element u, that is, the left-most vertex not yet assigned to o, is chosen at
each step of the algorithm, put in its own cell, and assigned the next number in o

19

4.1. BFS and LBFS

=2 i=3 i=4
node | label | no. node | label | no. node | label | no.
v (6) 1 v (6) 1 v (6) 1
u (5) 2 u (5) 2 u (5) 2
w (5) - = w (5) 3 o w (5) 3
x 4) | - x 4) | - x 4 | -
y | @) | - y | 4) y | (4) | 4
z | @) | - z (4) z | 4| -
7 : 1
node | label | no. node | label | no.
v (6) - v (6)
u 0 |- u | (5) | -
w O - = w | 6 |-
z 0 | - z 0 | -
y 0 | - y 0 | -
ol =0 -
i< i=3 i=4
node | label | no. node | label | no. node | label | no.
v (6) 1 v (6) 1 v (6) 1
u B) | - u (5) 3 u (5) | 3
w (5) 2 > w (5) 2 s w (5) 2
x 4 | - x 4) | - x (4) | 4
y 0 | - y | (3) y | 3) | -
z 0 z (3) z @3 |-

Figure 4.2: Description of the first four iterations of BFS(G,v) for the graph G in
Figure {.1]. Dotted arrows indicate a tie between labels, and the algorithm may choose
arbitrarily which vertex to continue with, while plain arrows indicate enforced choice of
next vertex. Note that vertex z may or may not appear before y and z in the ordering
from the output.

20

4.1. BFS and LBFS

i= i = i=

node | label | no. node | label | no. node | label | no.
v (6) 1 v (6) 1 v (6) 1
U (5) 2 u (5) 2 u (5) 2
w | (5,4) > w | (5,4)] 3 » w | (54| 3
x (4) - x | (4,3)] - xz | (4,3)] 4
y | @) | - y | (4| - y | (42)] -
z (4) - z (4) - z (4,2)
i=1
node | label | no. node | label | no.
v (6) — v (6) 1
u 0 | - u | (5) | -
w O - > w (5) -
z 0 | - z 0 | -
y 0 | - y 0 | -
z 0 | - z 0 | -
i=2 i = i=4
node | label | no. node | label | no. node | label | no.
v (6) 1 v (6) 1 v (6) 1
u | (5,4) u | (5,4)] 3 u | (5,4)] 3
w (5) 2 5w (5) 2 s w (5) 2
x (4) - x | (4,3)| - xz | (4,3)] 4
y 0 | - Y @) | - y | (3,2) | -
z 0 - z (3) z (3,2)

Figure_4.3: Description of the first four iterations of LBFS(G,v) for the graph G in
Figure f.1]. Dotted arrows indicate a tie between labels, and the algorithm may choose
arbitrarily which vertex to continue with, while plain arrows indicate enforced choice of
next vertex. Note that vertex x always appear before y and z in the ordering from the
output. In fact, 0(4) = x in every possible output.

21

4.1. BFS and LBFS

(counting upwards). The algorithm then uses Refine, described in Algorithm B,
to split each remaining cell into two: one containing the vertices adjacent to the
pivot element, and one containting the non-adjacent vertices. An example of the
algorithm is given in Figure {.4.

Algorithm 4: Using a set-queue to find LBFS ordering
Input: A graph G = (V, E) of order n, and a vertex v € V
Output: An ordering o of V

1 begin

Initialize ordered partition of V as @ < ({v},V '\ {v})

fori=1,2,...,ndo

C + next cell of Q

Select any vertex u in C' as pivot element

o(i) < u

Place u in its own cell

U+ {w|w € N(u), 0~!(w) undefined}

Refine(Q, U)

© 0 N O A W

return o

=
o

Algorithm 5: The algorithm Refine for partition refinement of a queue
of sets.
Input: An ordered partition (Vi,Va,..., V) of a set V', and a subset

SCV.
Output: A refined, ordered partition (V{,V5,...,V/) of V.
1 begin
2 fori=1,2,...,k do
3 U+~V,nS
4 if U# 0 and U # X; then
5 L Add U before X; and replace X; by X; \ U

To implement Algorithm @ in O(n+m) time for a graph G = (V, E) of order
n and size m, we need to ensure that Refine(P,S) runs in O(|S]) time for any
ordered partition P of V' and any set S C V. As explained in [24], this can
be done by representing the ordered partition of V' as a doubly linked list of
its cells. Additionally, the vertices of V' are kept in another doubly linked list,
arranged such that each cell may keep a start- and end-pointer, representing
which interval in the vertex list is included in the cell in question. That is,
the cell includes all vertices from the vertex at its start-pointer up until (and
including) the vertex at its end-pointer. Together with a constant-time function
that maps each vertex to its current cell, Refine(P,.S) can be implemented by
iterating over the elements of S, rather than over each cell in P. Every vertex v
in S can be moved to appear before the first vertex in its cell in constant time.

22

4.1. BFS and LBFS

after pivot at a:

after pivot at b:

after pivot at c:

after pivot at d:

2]
2]
2]
2]

b

abcdefghijklmn

bedef

cd

ef

o] La] [¢] [¢]
(o] [e] [[¢] [e] [u] [3] [1] [#] [=] i) [[=

ghijklmn
ghij klmn
hj gi k m In

Figure 4.4: Exemple of how pivoting in Algorithm H can be used to run LBFS on the
given graph G, starting at vertex a. Comparing to the labeled version in Algorithm §,
vertices ¢ and d would satisfy label(c) = label(d) = (14, 13) after two iterations, so
vertices ¢ and d are placed in the same cell after the second pivoting i.e. after pivoting
at b. At the same time, label(e) = label(f) = (14) <jex (14, 13), hence their common
cell is placed after the cell containing ¢ and d.

23

4.2. Recognizing chordal graphs

Moreover, it is straightforward (but perhaps somewhat tedious) to verify that
insertion of new cells and re-linking of start- and end-pointers from cells can
similarily be made in constant time (we refer to the original algorithm in [35], if
the details are of interest), resulting in a time complexity of O(] N(u)|) for the
call to Refine in step { of Algorithm f. This sketches the proof of the following
lemma.

Lemma 4.1. Lexicographic breadth first search can be implemented in O(n+m)
time for input graphs of order n and size m.

Note that despite that we cannot implement the ”labeled version” of LBFS
without some more complicated data structures than solely the labels, it might
be conceptually easier to think about LBFS in the way it is presented in Algo-
rithm B. We will shift between the two ways to think about LBFS, as to suit
the context.

4.2. Recognizing chordal graphs. Recall that chordal graphs are graphs
with no induced cycle of length at least 4, that is, a graph is chordal if and only
if it is {Cy,C5,. . .}-free. LBFS can be used to recognize chordal graphs using
the following two theorems.

Theorem 4.1 ([35, Thm. A]). A graph is chordal if and only if its vertezx set
has a perfect elimination ordering.

Theorem 4.2 ([21, Thm. 4.3]). If G = (V, E) is a chordal graph, and o is an
LBFS ordering of V, then o is a perfect elimination ordering.

This already gives us a clear picture of how we can recognize chordal graphs:
we find an LBFS ordering o, and verify whether or not it is a PEO. It is worth
mentioning that in the original version of [35] the LBFS algorithm took no
starting vertex as input (it picked an arbitary vertex first) and constructed an
LBFS order ”"backwards”, so that the obtained ordering need to be reversed
before testing if it is a PEO (or, as in [21], the definition of PEO needs to be
"reversed”), which frankly, seems unnecessary.

Before we continue with proving the two theorems, let us consider two exam-
ples. Firstly, recall that one possible LBFS ordering on the graph G in Figure
was

o= (v,u,w,z,y,2).

This ordering is a PEO, as verified in Figure @ It is easy to verify that G
indeed is a chordal graph. A non-example of a PEO is the LBFS ordering

™= (a7b7c7d7f’e7h7j7i7g7m7k‘7l7n)

from Figure Q since, for example, the induced subgraph on N(h) in
Gla,b,c,d, f,e, h] is no clique — see Figure §.6. The underlying graph is not
chordal, since e.g. the vertices a, ¢, d and h induces a Cjy.

Now, we begin with a lemma which originally is credited to Dirac in [L6], but
here stated as in [21].

24

4.2. Recognizing chordal graphs

Glv, u] Glv, u, w|
U U
N (u) N(w)
v
w

Figure 4.5: Verify that the ordering ¢ = (v,u,w,x,y, 2) is a perfect elimination or-
dering. The induced graph on the respective neighborhoods always form a clique. The
shaded vertices and edges are elements of G, but not of the respective induced subgraph.

Lemma 4.2 ([21, Lem. 4.2]). Every chordal graph has a simplicial vertez.

Although its proof is not too complicated, only slightly technical, we omit
it. The statement is only needed for the only if-statement of Theorem K.1|, and
the most important result needed in showing that chordal graphs are recogniz-
able with LBFS and PEOs is the if-statement of Theorem @ together with
Theorem @

Proof of Theorem B First assume G = (V, E) is a graph with a perfect elimi-
nation ordering o = (v1,v2,...,v,). If G has no cycle of length at least four, it is
clearly chordal. Hence assume G has some cycle C' with & > 4 vertices. Let v be
the vertex on C such that v >, u for all other vertices v on C, i.e. v is maximal
on C w.r.t o. Since o is a PEO, v is simplicial in the graph Glvy,ve,...,v].
Let u and w be the two neighbors of v on C. Note that the length of the cycle
ensures that u and w are not adjacent on C. However, they must both belong to
the clique induced by N(v) in G[v1,va, ..., v], since they precede v in o. Hence
the edge {u,w} exists in G and forms a chord of C. Since C' was an arbitrary
cycle of length k > 4, this concludes that G is chordal.

Conversely, suppose G = (V, E) is a chordal graph. If |V| = n = 1 the
unique, trivial ordering of V' vacously satisfies the property of being a perfect
elimination ordering. We then proceed by induction: assume that for some fixed
k > 1, every chordal graph of order k has a perfect elimination ordering, and
suppose G has k + 1 vertices. By Lemma #.2, G has a simplicial vertex v. Since

25

4.2. Recognizing chordal graphs

Gla,b,c,d, f, e, h]

N(n)
d b

a

Figure 4.6: The ordering 7 = (a,b, ¢, d, f,e, h,j,i,g,m, k,l,n) is no perfect elimination
ordering, since N(h) does not form a clique in the induced subgraph Gla,b,c,d, f, e, h].
Note that the ”missing” edge {c,d} correspond to a ”missing” chord in the cycle
a,c,h,d,a. The shaded vertices and edges are elements of GG, but not of the induced
subgraph.

26

4.2. Recognizing chordal graphs

,’
o o
a

Figure 4.7: If a >, b >, c for some LBFS ordering ¢ and c is adjacent to a but not to
b, then there exists a vertex d adjacent to b but not a, such that d <, c.

chordality is a hereditary property, the graph G — v is a chordal graph with k
vertices, and thus has a PEO ¢ starting at some vertex other than v. We may
then extend o to the ordering o’ : {1,2,...,k+ 1} = V of the vertices of G by
defining

. o(1) Hfl1<i<k
o'(i);= .
v ifi=Fk+1.

Since o is a PEO of G — v and v is simplicial in G, ¢/ must be a PEO of G. [

For our second important proof we need the following lemma, which is visu-
alized in Figure {.7.

Lemma 4.3. Let a, b, and ¢ be vertices of some graph G = (V, E), and let o
be an LBES ordering of V. Suppose ¢ precedes b, and b precedes a in o, that is,
suppose a >4 b >, c¢. If {a,c} € E but {b,c} ¢ E, then there exists a vertex d
such that ¢ >, d, {b,d} € E and {a,d} ¢ E.

Proof. Let L;(v) denote the label of vertex v after the i:th iteration of Algo-
rithm B. Notice that labels of vertices can only increase during the algorithm;
that is, if i < j, then L;(v) < L;(v) for all vertices v. Moreover, if L;(v) < L;(u)
for some vertices v and u and a fixed index i, then L;j(v) < L;j(u) for all in-
dices j > 4. These two remarks together imply that if a, b, and ¢ are ver-
tices in some graph with an LBFS ordering o that satifies a >, b >, ¢, then
Li(a) < Li(b) < Li(c) for alli = 1,2,...,n.

Assuming that c is a neighbor of a but not of b implies that L,-1()_1(a) <
Lg-1(¢)(a) while Ly-1()_1(b) = Ly-1(¢y(b). Since Li(a) < L;(b) for all i, this
means that the label of b must have been increased at some earlier step, when
the label of a was not increased. That is, there exists some vertex d with d <, ¢
such that Ly-1(g)—1(b) < Ly-1(q)(b) and L,-1(4)—1(a) = L,-1(g)(a). For this to
happen, we must have that {b,d} € E but {a,d} ¢ E. O

This lemma, although rather easy to prove, really captures the most impor-
tant structural property of an LBFS ordering: the existence of preceding vertices
that act as tie-breakers.

27

4.2. Recognizing chordal graphs

Proof of Theorem @ The proof is done by induction on the number of vertices.
The statement is trivial for graphs of order n = 1. Then let G = (V, E) be a
chordal graph of order n, and assume that the assertion holds for all chordal
graphs of order n — 1. Let o be an LBFS ordering of V and suppose x =
o(n). Since chordality is hereditary, the graph G — z is chordal. Moreover, the
restriction of ¢ to the domain {1,2,...,n — 1} is an LBFS ordering of G — z,
and by the hypothesis it thus suffices to show that the vertex x is simplicial in
G.

Assume the contrary, namely that z, the largest vertex in o, is not simplicial.
We will show that this assumption makes it possible to construct an infinite
sequence of unique vertices in the finite graph G. To this end, assume vertices
1, T2, ..., Ty are given, and consider the following four properties

(i) {z,z;} € F <= ie{l,2}

(ii) {zj,z;} € B <= |i—j|=2
(iii) &1 >5 T2 >5 ... >6 Tm
)

(iv) For each j with 2 < j < m, the vertex z; is the smallest vertex w.r.t o
such that {z;_o2,2;} € E but {z;_3,2;} ¢ E.

Initially, we start with the case when m = 2, and pick z; and x5 to be nonadja-
cent neighbors of = (they surely exist, otherwise N(z) would be a clique, but x is
not simplicial) such that o~1(x3) is as small as possible. The properties (i), (ii)
and (iii) are then surely satisfied. Property (iv) is satisfied if we, for notational
reasons, put rg =z and x_1 = z7.

Now consider any sequences of vertices z1, x2, ..., T,, that satisfies properties
(i)—(iv). Properties (ii) and (iii) ensure that the vertices y,—2, Tm—1 and z,,
satisfy the hypothesis of Lemma as a, b and c, respectively, hence we may
choose a vertex x,,11 that is adjacent to x,,—1 but not to z,,—2 and such that
Tm+1 <o Tm. If there are multiple such vertices, we pick the one that is smallest
with respect to o. See Figure for a visualization of the situation.

Property (i) is satisfied for this new sequence, since x,,+; is not adjacent
to x — otherwise, it would have been chosen as xs, since Tpy4+1 <o 2. By
construction, the sequence x1, X2, ..., Tm, Tm+1 also satisfies property (iii) and
property (iv).

It remains to show property (ii), namely, to show that z,,1 is adjacent to
Tm—1 but no other vertices of the sequence. Firstly, if x,,11 were adjacent to
ZTm—3, then we could apply Lemma @ to the vertices x,,—3, Tm—2 and z,,41 as a,
b and c respectively. This would imply the existence of a vertex y preceding x, 11,
hence preceding x,,, adjacent to x,,—o but not to x,,_3, which contradicts that

property (iv) is satisfied for the sequence z1, x2, ..., . Hence {zp41,Tm—3} ¢
E. Secondly, x,,+1 is not adjacent to z, x1, x3, ..., Tmym—4 NOT t0 Xy, since if
so, then properties (i) and (ii) would imply the existence of a chordless cycle
of length at least four in G. Again, see Figure for a visual reminder of the
situation.

The extended sequence thus satisfies the four properties, and this procedure
can be repeated indefinitely. But this implies G is infinite, which it is not. By

28

4.2. Recognizing chordal graphs

- —e T« e

Tm—3 Tm+1

Figure 4.8: Visualization of the induction step in the proof of Theorem @

contradiction, this means that x is simplicial in G. Thus o is a PEO of V', and
the induction principle implies the assertion of the theorem. O

As mentioned earlier, the established results can be combined to recognize
chordal graphs as in Algorithm H Before we leave the topic of recognizing chordal
graphs, we need to make sure that we can verify wether or not a given ordering
is a PEO. To do this in linear time we follow the approach of [21], as described
in Algorithm B (c.f.[85] for a completely different approach). The main idea is
to iterate through the LBFS ordering backwards, and continously keep track
of which neighboring vertices that need to be adjacent. We will see that this
yields a linear time complexity, as opposed to checking that (the restriction to
preceding vertices of) each neighborhood induces a clique.

To be more precise, suppose G = (V, F) is a graph and o = (v1,va,...,vy)
an ordering of V. In Algorithm [, we store a set A(v), initially empty, for each
vertex v. If this set contains vertices not neighboring v, then some vertex larger
than v in ¢ is not simplicial, implying ¢ is no PEO. To populate these sets
appropriately, we construct the set X of preceding neighbors of v. If this set
contains at least two vertices, we pick its largest (with respect to the ordering)
vertex u and add the remaining vertices of X to the set A(u). In this way, when
i = o~ !(u) either v is correctly identified to not be simplicial in G[vy, ..., Vo100
or the neighbors of u are added to A(w) for some vertex w, continuing the check
of simpliciality. By this argument and observing that the cardinalities of the sets
A(u) are bounded by the cardinalities of N(v), Golumbic proves the following
Lemma.

Lemma 4.4 ([21, Thm. 4.5]). Let G = (V, E) be a graph of order n and size m,
and suppose o is an ordering of V. Then it can be decided whether or not o is
a perfect elimination ordering in O(n + m) time.

29

4.2. Recognizing chordal graphs

Algorithm 6: The algorithm Perfect recognizes perfect elimination
orderings.

Input: A graph G = (V, E) of order n, and an ordering o of V'
Output: True if o is a PEO, False otherwise.

1 begin

2 A(v) + 0 for each v € V

3 fori=n,n—1,...,2do

4 v+ o(i)

5 if A(u)\ N(u) # 0 then

6 L return False

7 X+~ {zeN©w)|z <, v}

8 if |X|> 1 then

9 u + o(max{oc~(z)|z € X})
10 L A(u) + A(u) U (X \ {u})
11 return True

Algorithm 7: The full recognition algorithm of chordal graphs, using
LBFS and Algorithm B

Input: A graph G = (V, E)
Output: True if G is chordal, False otherwise.
1 begin
Let v be any vertex of V
o < LBFS(G,v)
return Perfect(G, o)

W N

30

4.3. Recognizing cographs

This means our hard work has paid off: chordal graphs are recognizable in
linear time!

Corollary 4.2.1. Chordal graphs of order n and size m can be recognized in
O(n +m) time.

Proof. For correctness, note that Lemma Q ensures that the LBFS ordering
calculated in Algorithm B will correctly be identified to be, or not be, a PEO. If
the ordering is a PEO, then Theorem implies that the input graph is chordal.
If the LBFS ordering is not a PEO, then the contrapositive of Theorem
ensures the input graph isn’t chordal.

The linear runtime of Algorithm H follows immediately from Lemma [l] and
Lemma Q O

4.3. Recognizing cographs. As mentioned earlier, the chordal graphs are
not the only graphs we can recognize with LBFS. In this section and next we will
examine how multiple, and slightly modified, runs of LBFS on the input graph
can be used to recognize these graph classes. We will begin with the cographs;
recall that these graphs are characterized as the P;-free graphs.

Let us start by example: what happens in a run of LBFS on a cograph?
Consider the cograph in Figure and the LBFS ordering o = (a, g, f,b,c,d, e).
In contrast to, for example, the LBFS run depicted in Figure Q cells are, so to
speak, always left intact until its first vertex is used as a pivot. To explain this
behavior, which turns out to be a characterizing trait for cographs, we need to
develop some terminology on sets of vertices that are tied with respect to the
LBFS labels.

a

after pivot at a:

b g after pivot at g:

after pivot at f:

after pivot at b:

after pivot at c: @ @ m
d (& after pivot at d: @ @ ﬂ E

Figure 4.9: The cograph G = (¢ ® (b®¢c) ® (d®e)) @ (g ® f) and a visualization
of the cells during one possible run of LBFS(G, a). Roughly speaking, succeeding cells
are left intact until one of its elements has been used as pivot, something which is not
necessarily satisfied for arbitrary graphs.

31

4.3. Recognizing cographs

Bretscher et al. defined the following concepts in [3]. Let G = (V, E) be any
graph, and o any ordering of V. For any vertex x € V, we let N;(z) denote the
subset of N(z) containing vertices strictly smaller than ¢ w.r.t. . That is,

Ni(z) :={ueV|ue N(z), o(u) <i}.

For each vertex = € V, we let S(z) denote the set of vertices tied with = when
x was chosen as pivot, that is, the set of tied vertices in step f of Algorithm
or, equivalently, the cell C' in step @ of Algorithm E We call S(x) the slice
of o starting at x or simply a slice. For notational reasons, we let the slice
starting at the first vertex of o contain all of V. Note that during an LBFS
run any cell containing solely vertices not yet assigned a value in ¢ is either a
slice or the disjoint union of several slices. Moreover, it is simply observed that
the restriction of an LBFS ordering to a slice S(x) is an LBFS ordering of the
induced subgraph G[S(z)].

Examples of slices in Figure @ include S(a) = {a,b,c,d,e, f,g}, S(b) =
{b,c,d,e} and S(c) = {c}. Some slices of Figure @ are S(b) = {b,c,d,e, f}
and S(d) = {d}. Note that the cell containing vertices e and f after pivoting at
vertex b in Figure is the union of the slices S(e) and S(f). However, every
cell in Figureg@ containing unnumbered vertices is always a slice starting at
one of its vertices, e.g. the cell {b, ¢, d, e} is precisely the slice S(b). As we will
see, the same behavior can be observed in any LBFS run on any cograph.

Although not apperant in these smaller examples, one technical difficulty
here is that for larger graphs slices can be deeply nested, so to speak. Let us
first investigate the "local” level closer. Given a slice S(z) we define S4(z) :=
S(z) N N(x) or, equivalently, S4(x) := S(x') where 2’ is the vertex immediately
succeeding z in o (formally, 2’ = o~ !(o(x) + 1)). During the LBFS run, the
vertices in S (z) will be chosen as pivots, in some order, directly after the vertex
x acts as pivot — no other pivots are used between. Hence, after the last pivoting
of a vertex in S4(x) the set S(z) N N(z) consists of the disjoint union of cells
S1(z), Sa(z), ..., Sp(z) such that each S;(z) consists of vertices with identical
neighborhoods in $4(z). We call the S;(x):s the z-cells of S(x), and furthermore
let SV (x) denote the ordered collection (Si(z),...,Sk(z)) of all z-cells. Note
that any of these sets might be empty for a particular vertex x. These definitions
are visualized in Figure E

Some examples are called for at this point. In Figure Q we have S(b) =
{b,c,d,e, f}, SA(b) = {c,d} and SN (b) = (S1(b), S2(b)) = ({f}, {e}). Examples
involving empty sets are S4(c) = 0 with SV (c) = (S1(c)) = ({d}) while S4(d) =
(. In general, both S4(x) and S (z) will be a slice of the underlying ordering,
as long as they are non-empty. However, for ¢ > 1, the non-empty z-cell S;(x)
might be a union of several slices since there might be edges between the different
z-cells — although not in the case of cographs. To state this formally, we say
that an LBFS ordering of a graph satisfy the x-cell condition if there exists no
edge between a vertex in S;(v) and a vertex in S;(v) for i # j and every vertex
.

32

4.3. Recognizing cographs

g Sl(v) SQ(U) Sk(v)

Figure 4.10: Visualization of the definitions of S(v), S4(v) and SV (v). In particular
S(v) = {v} USA(v) U Si(v) U...U Sk(v), where one or several of the sets in the union
might be empty.

Lemma 4.5 ([3, Lem. 3.6]). Let G = (V, E) be a cograph and suppose o is an
LBFS ordering of V.. Then o satisfies the x-cell condition.

The proof is a simple use of contradiction: if the conclusion is not satisfied,
then we can find an induced P;. Moreover, the contrapositive statement will be
used to identify graphs that are not cographs. Before we dive deeper into this
identification, note that it is easy enough to verify the following observation:

Observation 4.1. Let o be an LBFES ordering of a Py starting at an endpoint
and let o’ be an LBFS ordering of a Py starting at a midpoint. Then o' satisfies
the x-cell condition, while o does not.

One simple property of Pjys is that it is self-complimentary. That is, the com-
plement of a Py is itself a P;. Moreover, the midpoints of the graph P ~ P, are
the endpoints of its complement P, and vice versa. In light of Observation .1,
it thus seems as if we might get away with testing for the z-cell condition on a
graph G and its complement G. This is, at least, a good intuitive idea of how
we might recognize cographs.

The next observation we make is the following: we can, given a graph G,
perform a run of LBFS on the complement G without calculating the edge set
of G. This is easiest realized by considering the labeled version of LBFS in
Algorithm E Clearly, given any graph G = (V, E), the neighbors of a vertex v
in G = (V, E) are precisely the non-neighbors of v in G, and vice versa. When a
vertex v is chosen as pivot, we split each current cell C' into three, namely, into
the single-vertex cell containing v, and the cells C'N Ng(v) and C'N Ng(v). To
find an LBFS ordering of G we thus only need to interchange the order of how
these new cells are inserted to the ordered partition of V' (the "set queue”). In
other words, we simply replace step a of Algorithm a by

5 | Add U before X; and replace X; by X; \ U.

to obtain the modified subroutine Refine.

33

4.3. Recognizing cographs

e b C G b C

a
®

€ d € d

Figure 4.11: G is a graph with precicely one induced Py, namely, bede. Therefore,
neither G nor G is a cograph. One possible LBFS ordering of G is o = (a, ¢, b,d, €), and
one possible LBFS ordering of G is @ = (a, b, e,d, ¢). Moreover, the run of LBFS™ (G, a)
would yield the ordering 7~ = (a,¢,e,b,d). By Observation both ¢ and 7 satisfies
the z-cell condition, while @~ does not. Hence only o~ verifies that G is indeed not a
cograph, by Lemma §.5.

Unfortunately, given a graph G = (V, E) where P C V induces a P, per-
forming an LBFS run on G and G is not sufficient in itself to ensure that we
always manages to pick an endpoint of either the P or of P. By way of example,
Figure highlights the problem. It turns out that the second modification
of LBFS needed to recognize cographs has to do with how we pick the pivoting
element from slices. Bretscher et al. shows that if we use an LBFS ordering o
of G when breaking ties in a run of LBFS on G, then we will always manage to
choose an endpoint of either P or P as the first vertex, thereby ensuring that
any induced P, in the input graph is recognized as such. More truthfully, the
modified LBFS ~ in Algorithm { ensures that any input graph that is not Py—free
will fail the x-cell condition.

We are now ready to tie everything together in the recognition algorithm for
cographs presented in Algorithm . Although the z-cell condition captures the
situation rather well, it is a condition that is complicated to check efficiently,
due to its "local” nature, roughly put. For completeness, we now formulate the
condition Bretscher et al. actually uses in Algorithm {.

Definition 4.3. Let G = (V, E) be a graph and ¢ an LBFS ordering of G. Fix
some vertex x. We define the local neighborhood of an x-cell S;(x), denoted
NY(S;(x)), as the set of vertices in S(x) adjacent to some vertex in S;(v) which
preceeds all vertices of S;(v). That is, if z; is the smallest vertex of S;(z), then

NU(Si(x)) :=={z € S(v) | = <, x, N(z) N S;(v) # B}

34

4.3. Recognizing cographs

Algorithm 8: The LBFS variant of LBFS.
Input: A graph G = (V, E) of order n, a vertex v € V, and an LBFS
ordering o of V
Output: An ordering & of the vertices of G
1 begin
2 Initialize ordered partition of V as @Q < ({v}, V' \ {v})
3 fori=1,2,...,ndo
4 C <+ next cell of)
5 Select vertex u € C, minimal w.r.t o, as pivot element
6
7
8
9

o (i) < u

Place u in its own cell

U <+ {w]|w € N(u), w unnumbered }
Refine(Q, U)

10 return o~

Algorithm 9: The full recognition algorithm of cographs.
Input: A graph G = (V, E)
Output: True if G is a cograph, False otherwise.
begin

Let v be any vertex of V

o < LBFS(G,v) // LBFS ordering of G

1
2
3
4 | o « LBFS (G,v,0) // LBFS™ ordering of G
5 if 0 and 7~ satisfies the NSP on G resp. G then
6 ‘ return True
7 else
8 L return False

We say that o satisfies the neighborhood subset property if
Yo € V,Vi < js.t. S;(v) #0: NY(Si(v)) 2 N'(S;(v)).

Intuitively, we may think of the neighborhood subset property (NSP) as a
"global” version of the z-cell condition on o. Bretscher et al. [3] both shows that
the NSP can be verified in linear time, and proves the following characterization
of cographs.

Theorem 4.4 ([3, Thm. 4.3]). Let G = (V, E) be a cograph and suppose o is an
LBES ordering of V.. Let 5~ be the output of the run LBFS (G,c). Then G is a
cograph if and only if o satisfies the NSP in G and ¢~ satisfies the NSP in G.

That is, Algorithm E is correct. Since both LBFS, the modified LBFS and the
check of the NSP are known to be of linear time-complexity, so is the recognition
algorithm for cographs — as promised.

35

4.4. Other LBFS based recognition algorithms

Lastly, two remarks: Bretcher et al. also includes specifics on how a cotree
can be constructed, and how a set inducing a P can be found, both in linear
time. These acts as certificates of membership respectively non-membership and,
more importantly, the cotree is highly useful in applied contexts (see e.g. [12]).
Secondly, there exists other linear time recognition algorithms for cographs [[14,
19, 23] using several different techniques, but the algorithm presented here seem

to be widely recognized as the simplest one.

4.4. Other LBFS based recognition algorithms. In this section, we
summarize the collection of linear time recognition algorithms which are largely
based on multiple runs of LBFS or modified versions of LBFS (e.g. LBFS).

Firstly, we have mentioned an efficient recognition algorithm for trivially
perfect graphs earlier, and have already noted that the respective recognition
algorithms for chordal graphs and cographs can be combined as well. Still, there
is a perhaps even simpler LBFS-based algorithm for this class, given in [4]. It uses
only a single run of LBFS, but makes sure that the vertices of the input graph
initially are ordered as a non-increasing degree ordering. Moreover, it performs
a check on the cells during the run of the LBFS, rather than afterwards, thus
deviating slightly from the general pattern of “order and check” exhibited by
these LBFS-based algorithms.

To continue, we first introduce a handful of new graph classes. A graph
G = (V,FE) is an interval graph if there exists a family of intervals F of any
linearly ordered set R (e.g. the real numbers) and a surjective map ¢ : V — F
such that {u,v} € E if and only if ¢(u) N@(v) # 0. If all intervals in F have
unit length, then G is said to be a wunit interval graph, and if no interval of F
is properly contained in another interval of F, then G is said to be a proper
interval graph. It turns out that the classes of unit interval graphs and proper
interval graphs actually coincide: they are the same class, despite there different
definitions (this was originally established in [34], a more recent proof can be
found in [18, Thm. 1]).

Strictly speaking, interval graphs can be characterized as H—free, but the
infinite set #H is not very easy to describe. We refer to [28, Thm. 4] for details.
Moreover, unit interval graphs (and hence proper interval graphs) are precisely
the K 3—free interval graphs [34], so unit interval graphs can also be seen as a
H—free graph class.

Linear time recognition algorithms of interval graphs and unit interval graphs
have been studied extensively, not only in connection to LBFS. Much like in the
case of cographs, the LBFS based methods seem to be widely accepted as the
simplest recognition_algorithms in terms of, for example, required data struc-
tures. Li and Wu [29] present the most recent LBFS-based recognition algo-
rithm, which simultanously recognizes both interval graphs and unit interval
graphs with four sweeps of (modified) LBFS, improving on the first LBFS so-
lution for interval graphs in [[13] (which needed six sweeps of different types of
modified LBFS). Another mention-worthy recognition algorithm of specifically
unit interval graphs, using only three modified LBF'S sweeps, can be found in [9].

36

4.4. Other LBFS based recognition algorithms

H D G

Figure 4.12: The house graph H, the domino graph D and the gem graph G appearing
in the forbidden subgraph characterization of distance-hereditary graphs.

The respective introductions of [J] and [29] both include good historical notes
on the progression towards simpler recognition algorithms for interval and unit
interval graphs. If interested, see also the earlier mentioned survey article [10].

Another class of graphs where the use of LBFS has proven to be a success-
ful strategy is that of distance-hereditary graphs. A graph lies in this class if
dg(z,y) = dg(z,y) for any vertices x and y in any connected, induced subgraph
H of G. Distance-hereditary graphs are precisely the {H, D, G, C5, Cs, . . .}—free
graphs, where the graphs the house graph H, the domino graph D and the gem
graph G are given in Figure §.12.

37

5 Concluding remarks

We have now seen examples of linear time recognition algorithms for quite many
H-—free graph classes, and there are yet still others we have omitted or possibly
even overlooked completely. As a final tricky endeavour, we shall try to sum-
marize a couple of open problems within the subject, even though we cannot
hope to cover everything. Again, both [2] (in particular appendix A) and [33]
are great resources for navigating in the vast subject of linear time recognition
algorithms and, more generally, graph classes.

Perhaps surprisingly, it is still not known whether or not members of the
class of triangle—free graphs, i.e. Cs—free graphs, can be recognized in linear
time or not, despite large combined scientific efforts. The most efficient algo-
rithms for recognizing triangle-free graphs rely on studying the adjacency matrix-
representation in various ways, and is thus dependend on the time complexity of
multiplying two square matrices — a large topic in itself. See [1] for algorithms
with time complexity O(n®) respectively O(m**/(“+1)) for a graph of order n
and size m, where O(n*) is the time complexity of multiplying two n x n ma-
trices. The same article give similar bounds for recognizing Cy—free graphs for
k> 4.

Another interesting graph class in this context is that of perfect graphs. This
is a large class in the sense that it, amongst other, properly contains more or
less every graph class we have discussed: split graphs, threshold graphs, chordal
graphs, interval graphs and cographs [21]. One definition is as follows: a graph
G is perfect if, for every induced subgraph H of G, the size of a maximum
clique of H equals the chromatic number of H. Several other definitions have
occured, and were proved to be equivalent in what has become to be known as
the Perfect graph theorem [30]. The characterization of perfect graphs as the
{C5,C5,Cg, C, . . .}—free graphs was conjectured some 60 years ago by Berge,
but the proof remained elusive until 2006 [G]. At approximately the same time,
some of the authors proved that perfect graphs can be recognized in polynomial
time (although with a time bound of O(n?)) [5]. It is ofcourse no easy task to
improve this time bound, but since so many of the subclasses of the perfect graph
class can be recognized efficiently the optimistic scientist can remain hopeful.

As we have seen, mostly in Section J, different containments and relationships
between graph classes can help us to linear time recognition. In its most crude
form, we know that if A, B and C are graph classes such that C = AN B and
linear time recognition algorithms for members of A and B are known, then
C can be recognized efficiently as well. Threshold graphs and trivially perfect
graphs were example of this.

Another example of a subtle use of different containments is that of pseudo-
split graphs, where any recognition algorithm of split graphs is applied as a
first step, since the class of split graphs is contained in_the class of pseudo-split
graphs. Then the degree-characterization of Theorem can be used to check
for pseudo-split graphs that are not split.

We can thus conclude that the study of containments often help in finding

38

linear time recognition algorithms. However, a recognition algorithm consisting
of putting different recognition algorithms of other graph classes together may
get rather unreasonably complicated even though it has a linear running time.
If a recognition algorithm specifically constructed for the class in question can
be found, implementability increases drastically.

Another important note here is that the property of being H—free has several
advantages: it aids us in finding abovementioned relationships between graph
classes, it is helpful in the proofs of correctness (e.g. the contradictory use of
induced Pys for the recognition algorithm of cographs) and may, if needed, act
as certicates of non-membership. Hence, even though the H—freeness in itself
rarely (possibly never!) yield fast recognition algorithms directly, they remain
important to study.

We have also seen a general paradigm of two steps in the presented recog-
nition algorithms: order the vertices, then check some characterizing property.
This is perhaps most noticeable in the LBFS-based algorithms, but one can ar-
gue that the algorithms of Section J are included in this category as well, since
the degree sequence and degree orderings that are used is one way of ordering
the vertices. In the future, we thus might expect that further study of different
search-methods will turn out to be a successful approach to finding new linear
time recognition algorithms. Similarly, characterizations in terms of degree se-
quences remain an interesting direction of study, since they often immediately
imply the existence of a very simple, linear time recognition algorithm.

39

References

References

[1] N. Alon, R. Yuster, and U. Zwick. “Finding and counting given length
cycles”. In: Algorithmica 17.3 (1997), pp. 209-223.

[2] A. Brandstddt, V. B. Le, and J. Spinrad. Graph Classes: A Survey. Society
for Industrial and Applied Mathematics, 1999.

[3] A. Bretscher et al. “A Simple Linear Time LexBFS Cograph Recogni-
tion Algorithm”. In: SIAM Journal on Discrete Mathematics 22.4 (2008),
pp. 1277-1296.

[4] F.P.M. Chu. “A simple linear time certifying LBFS-based algorithm for
recognizing trivially perfect graphs and their complements”. In: Informa-
tion Processing Letters 107.1 (2008), pp. 7-12.

[5] M. Chudnovsky et al. “Recognizing Berge Graphs”. In: Combinatorica 25.2
(2005), pp. 143-186.

[6] M. Chudnovsky et al. “The strong perfect graph theorem”. In: Annals of
Mathematics 164 (1 2006), pp. 51-229.

[7] V. Chvétal and P. Hammer. “Set-packing and threshold graphs”. In: Univ.
Waterloo Res. Report CORR 73-21 (1973).

[8] T. Cormen et al. Introduction to Algorithms. 3rd ed. The MIT Press, 2009.

[9] D. Corneil. “A simple 3-sweep LBFS algorithm for the recognition of unit
interval graphs”. In: Discrete Applied Mathematics 138.3 (2004), pp. 371
379.

[10] D. Corneil. “Lexicographic Breadth First Search — A Survey”. In: Graph-
Theoretic Concepts in Computer Science. Ed. by J. Hromkovi¢, M. Nagl,
and B. Westfechtel. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 1-19. 1SBN: 978-3-540-30559-0.

[11] D. Corneil and R. Krueger. “A Unified View of Graph Searching”. In: STAM
Journal of Discrete Math. 22.4 (2008), pp. 1259-1276.

[12] D. Corneil, H. Lerchs, and L. Stewart Burlingham. “Complement reducible
graphs”. In: Discrete Applied Mathematics 3.3 (1981), pp. 163-174.

[13] D. Corneil, S. Olariu, and L. Stewart. “The LBFS Structure and Recogni-
tion of Interval Graphs”. In: STAM Journal on Discrete Mathematics 23.4
(2010), pp. 1905-1953.

[14] D. Corneil, Y. Perl, and L. Stewart. “A Linear Recognition Algorithm for
Cographs”. In: SIAM Journal on Computing 14.4 (1985), pp. 926-934.

[15] R. Diestel. Graph Theory. 5th ed. Graduate Texts in Mathematics.
Springer, 2017.

[16] G. Dirac. “On rigid circuit graphs” In: Abhandlungen aus dem Mathema-

tischen Seminar der Universitat Hamburg 25.1 (1961), pp. 71-76.

40

References

[17]

S. Foldes and P. Hammer. “Split graphs”. In: Proc. 8th Southeastern Conf.
on Combinatorics, Graph Theory and Computing. Ed. by F. Hoffman and
et al. Louisiana State Univ., 1977, pp. 311-315.

F. Gardi. “The Roberts characterization of proper and unit interval
graphs”. In: Discrete Mathematics 307.22 (2007), pp. 2906-2908.

E. Gioan and C. Paul. “Split decomposition and graph-labelled trees:
Characterizations and fully dynamic algorithms for totally decomposable
graphs”. In: Discrete Applied Mathematics 160.6 (2012), pp. 708-733.

M. Golumbic. “Trivially perfect graphs” In: Discrete Mathematics 24.1
(1978), pp. 105-107.

M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. 2nd ed.
Vol. 57. Annals of Discrete Mathematics. Elsevier, 2004.

M. Groétschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Com-
binatorial Optimization. 2nd ed. Algorithms and Combinatorics. Springer,
1993.

M. Habib and C. Paul. “A simple linear time algorithm for cograph recog-
nition”. In: Discrete Applied Mathematics 145.2 (2005), pp. 183-197.

M. Habib et al. “Lex-BFS and partition refinement, with applications to
transitive orientation, interval graph recognition and consecutive ones test-
ing”. In: Theoretical Computer Science 234.1 (2000), pp. 59-84. 1SSN: 0304-
3975. DOI: https://doi.org/10.1016/S0304-3975(97)00241-7.

P. Hammer and B. Simeone. “The splittance of a graph”. In: Combinatorica
1.3 (1981), pp. 275-284.

P. Heggernes and D. Kratsch. “Linear-time certifying recognition algo-
rithms and forbidden induced subgraphs”. In: Nordic Journal of Computing
14 (2007), pp. 87-108.

K. Kuratowski. “Sur le probleme des courbes gauches en topologie”. In:
Fund. Math. 15 (1930), pp. 271-283.

C. Lekkeikerker and J. Boland. “Representation of a finite graph by a set
of intervals on the real line”. In: Fundamenta Mathematicae 51 (1962),
pp. 45-64.

P. Li and Y. Wu. “A four-sweep LBFS recognition algorithm for interval
graphs”. In: Discrete Mathematics & Theoretical Computer Science Vol. 16
no. 3 (2014).

L. Lovész. “Normal hypergraphs and the perfect graph conjecture”. In:
Discrete Mathematics 2.3 (1972), pp. 253-267.

F. Maffray and M. Preissmann. “Linear recognition of pseudo-split graphs”.
In: Discrete Applied Mathematics 52.3 (1994), pp. 307-312.

N. Mahadev and U. Peled. Threshold Graphs and Related Topics. Vol. 56.
Annals of Discrete Mathematics. Elsevier, 1995.

41

https://doi.org/https://doi.org/10.1016/S0304-3975(97)00241-7

References

H. N. de Ridder et al. Information System on Graph Classes and their In-
clusions (ISGCI). https://www.graphclasses.org. Feb. 22, 2022.

F. Roberts. “Indifference graphs” In: Proof techniques in graph theory
(1969), pp. 139-146.

D. Rose, R. Tarjan, and G. Lueker. “Algorithmic Aspects of Vertex Elim-
ination on Graphs”. In: STAM Journal on Computing 5.2 (1976), pp. 266—
283.

C. Thomassen. “Kuratowski’s theorem”. In: Journal of Graph Theory 5.3
(1981), pp. 225-241.

J.-H. Yan, J.-J. Chen, and G. Chang. “Quasi-threshold graphs”. In: Dis-
crete Applied Mathematics 69.3 (1996), pp. 247-255.

42

https://www.graphclasses.org

	Introduction
	Preliminaries
	Graphs
	Graph classes
	Vertex orderings

	Degree orderings and sequences
	Recognizing split graphs
	Recognizing threshold graphs
	Other degree-related recognition algorithms

	Lexicographic breadth first search
	BFS and LBFS
	Recognizing chordal graphs
	Recognizing cographs
	Other LBFS based recognition algorithms

	Concluding remarks
	References

